Март 16, 2021 / Комментарии 0 |
Периметр (др.-греч. περίμετρον — окружность, др.-греч. περιμετρέο — измеряю вокруг) — общая длина границы фигуры (чаще всего на плоскости). Имеет ту же размерность величин, что и длина.
Иногда периметром называют границу геометрической фигуры.
Вычисление периметра имеет существенное практическое значение. Например, для вычисления длины ограды вокруг сада или участка. Периметр колеса (окружности) определяет, насколько далеко оно продвинется при полном обороте. Таким же образом, длина нитки, намотанной на катушку, тесно связана с периметром катушки.
Многоугольники являются основными фигурами для определения периметров, и не только потому, что они являются простейшими фигурами, но и потому, что периметры многих фигур вычисляются путём аппроксимации их последовательностью многоугольников. Первым известным математиком, который использовал этот подход, был Архимед, который аппроксимировал периметр окружности путём описывания около неё правильных многоугольников.
Периметр многоугольника равен сумме длин его сторон. В частности, периметр прямоугольника, имеющего ширину w {displaystyle w} и длину ℓ {displaystyle ell } , равен 2 w + 2 ℓ {displaystyle 2w+2ell } .
Равносторонний многоугольник — это многоугольник, имеющий равные длины сторон (например ромб — это равносторонний многоугольник с 4 сторонами). Чтобы вычислить периметр равностороннего многоугольника, нужно умножить число сторон на общую длину стороны.
Периметр правильного многоугольника можно вычислить по числу сторон и его радиусу, то есть расстоянию от центра до вершин. Длину стороны можно вычислить, используя тригонометрию. Если R — радиус многоугольника, а n — число сторон, периметр равен
2 n R sin ( 180 ∘ n ) . {displaystyle 2nRsin left({frac {180^{circ }}{n}}
ight).}
Периметр окружности пропорционален её диаметру (и радиусу). То есть, существует константа π такая, что если P — периметр окружности, а D — её диаметр, то:
P = π ⋅ D . {displaystyle P=pi cdot {D}.}
Для радиуса r окружности формула превращается в
P = 2 π ⋅ r . {displaystyle {P}={2}pi cdot {r}.}
Для вычисления периметра окружности знание радиуса или диаметра и числа π достаточно. Проблема заключается в том, что π не является рациональным (его нельзя выразить в виде дроби двух целых чисел) и даже не является алгебраическим (оно не является корнем никакого полиномиального уравнения с рациональными коэффициентами). Таким образом, получение точного приближения к π важно для вычислений. Нахождение знаков π относится ко многим областям, таким как математический анализ и теория алгоритмов.
Чем мельче структура фигуры, тем меньше площадь и тем больше периметр. Выпуклая оболочка остаётся той же самой.
Периметр и площадь являются двумя основными измерениями геометрических фигур, их часто путают. Нередко также считают, что увеличение одной из этих величин приводит к увеличению другой. Действительно, увеличение (или уменьшение) размера фигуры приводит к увеличению (или уменьшению) её площади, так же как и её периметра. Так, например, если нарисовать карту поля в масштабе 1/10 000, действительные размеры периметра можно вычислить простым умножением на 10 000. Действительная площадь будет в 10 0002 раз больше площади фигуры на карте.
Тем не менее, нет никакой связи между площадью и периметром фигур. Например, периметр прямоугольника шириной 0,001 и длиной 1000 чуть больше 2000, в то время, как периметр прямоугольника шириной 0,5 и длиной 2 равен 5. Площади обеих фигур равны 1.
Прокл (V-й век) писал, что греческие крестьяне делили поля, опираясь на периметры, однако урожай с поля пропорционален площади, а не периметру, и много наивных крестьян получали поля с большим периметром, но малой площадью.
Если удалить часть фигуры, её площадь уменьшится, а вот периметр может и не уменьшиться. В случае очень неправильных фигур некоторые могут спутать периметр с выпуклой оболочкой. Выпуклую оболочку визуально можно представить как резинку, натянутую вокруг фигуры. На рисунке слева все фигуры имеют одну выпуклую оболочку (шестиугольник).
Изопериметрическая задача — это задача нахождения фигуры с максимальной площадью среди фигур, имеющих заданный периметр. Решение интуитивно — это окружность. В частности поэтому капли жира в бульоне имеют форму кружочков.
Задача выглядит простой, но строгое математическое доказательство сложно. Изопериметрическая задача иногда упрощается — найти четырёхугольник, треугольник или другую определённую фигуру с наибольшей площадью среди имеющих заданный периметр. Решение изопериметрической задачи для четырёхугольников — квадрат, для треугольников — правильный треугольник. В общем случае, многоугольник с n сторонами имеет максимальную площадь при заданном периметре, если он является правильным, что ближе к окружности по сравнению с неправильными многоугольниками.
Читайте также
Эстетическая хирургия: Как выбрать доктора?
Эстетическая хирургия стала неотъемлемой частью современной медицины, предоставляя пациентам возможность
На что обратить внимание при выборе сиделки: только полезные рекомендации
Подбор сиделки – это ответственный и важный шаг при заботе
Как покупать товары за рубежом с помощью сервиса Shopozz
В наше время возможность совершать покупки за границей стала более
Подарочные пакеты: От Простых до Эксклюзивных
Подарочные пакеты играют важную роль в «процессе дарения». Они могут
Аккумуляторные батареи к смартфонам: технологии и тренды
Различные подходы к накрутке в Instagram
Накрутка в социальной сети Инстаграм* может быть эффективной для привлечения
Врач Московского медицинского центра рассказал о неочевидных симптомах язвы желудка
Болезни ЖКТ, то есть, говоря на понятном языке, болезни желудочно-кишечного
Кортексин, эффективное средство для поддержания здоровья мозга и нервной системы
Здоровье нервной системы – это ключ к полноценной жизни. Наш
Изделия из акрила в быту и в производстве: удивительные свойства и области применения
Акрил, известный также как полиметилметакрилат, является популярным и мультифункциональным материалом,
Почему кроссовки Balenciaga стоит их высокой цены
Как креативно упаковать детский подарок?
Волнительный момент вручения подарков всегда наполняет детей радостью. Чтобы этот
Прогулки под дождем: как выбрать ветровку-дождевик для ребенка
Осень несет с собой перемену погоды – надвигаются дождливые и
Ключевые тенденции в женской одежде: блузки, рубашки, туники
Ключевые преимущества обучения английскому языку в онлайн школе «Profieng»
Английский язык считается мировым языком общения. Он является официальным или
Возвращение страсти в отношения: Как преодолеть рутину и воспламенить любовный огонь